Writing your first plug-in for SMath Studio Desktop in VB.NET

[rev.l | 2016.12.23 | SS 0.98.6179]

SMath Studio desktop provides the possibility to write plug-ins to extend program's features. The most simply
feature you can think to add in the program is probably a function.

First of all, we have to decide our goal. In this plug-in, we will try to create a combinations function that achieves
what is shown below:

n!

S YR Y
c(5, 3)=10
c(3, 5)=1n lastError= "Factorial is defined for real numbers and zero."

The finished function syntax will be in the form: combin(n, k)=

This tutorial as well as the complete plug-in code can be found in the public SVN repository of SMath Studio:
https://smath.info/svn/public/plugins/Tutorials/\VB.NET/CombinFunction/

Regquirements

To accomplish our task we need an IDE (Integrated Development Environment); you can use the one you want, in
this example we will use Visual Studio Community 2015 (you can download it for free on the official website
https://www.visualstudio.com/vs/)

The second requirement is to have SMath Studio on your system.

Let's start!

1. Once Visual Studio is installed, open it and click on File = New Start Page #® X
Project from the main menu or Start = New Project from the Start Page

Visual Studio

IMPORTANT

Be sure to save your project periodically as you work on this tutorial!

2. In the New Project dialog, choose .NET Framework 2.0, then navigate to Templates = Other Languages
= Visual Basic = Windows = Class Library and type the name for this project.
In this case, we choose CombinFunction. Once all is done, click on OK.

Mew Project @

b Recent MET Framework 2.0 = Sort by: Default

4 Installed VB . Vic -
| | Windo ms Application Visual Basic Type: Visual Basic
4 Templates A project for creating a VB class library

N S V. .dil)
Console Application Visual Basic
4 Other Languages
. S VE
Acceleratore di compilazic FJ Shared Project e

VE
fnt:i! Class Library Visual Basic

Claud
Extensibility

b Online

Name:

Solution name: CombinFunction Create directory for solution

[] Create new Git repository

3. Now make the Solution Explorer visible (if it is not visible already) by clicking on View = Solution Explorer

File Edit View Project Build Debug Team Tools T
o - €* Code F7

m Solution Explorer Ctrl+W, 5
[]

R

Solution Expl

4. In the Solution Explorer, right-click the project name and click Unload Project.

Solution Explorer -

fa] Solution 'CombinFunction' (1 project)
r CombinFunction
& My Project kml Build
u-B References Rebuild

s
View

f

f

B [Clean
[J

f

Analyze

Scope to This

Mew Solution Explorer View
Add

Manage NuGet Packages...
Set as StartUp Project
Debug

Cut

Remove

Rename

Unload Project k‘

Open Folder in File Explorer

Properties Alt+Enter

fa] Solution 'CombinFunction' (0 projects)
b [y CombinFunction (unavailable)
Reload Project
Edit CombinFunction.vbproj

Cut

Remowve

6. The project file will be opened. Scroll down to the first <ltemGroup> tag and add the following code above it:

<PropertyGroup>
<!-- Relase -> SMath Relase Manager -->
<SMathDir Condition=" '$(SMathDir)' == '' AND '$(Configuration)' == 'Relase'
">..\..\..\Main\SMathStudio\canvas\bin\Debug</SMathDir>
<!-- Debug -> development -->
<SMathDir Condition=" '$ (SMathDir)' == '' AND '$(Configuration)' == 'Debug'
">C:\Program Files (x86)\SMath Studio</SMathDir>
</PropertyGroup>

| hint: you can copy the code from these greyed areas|

These lines of code will allow you to have a plug-in ready to be shared with the community, and they let you to
compile the plug-in in Debug mode on your machine. If is not in your purposes to share the plugin, you can
even use the code below instead.

<PropertyGroup>
<SMathDir Condition=" '$ (SMathDir)' == '' ">C:\Program Files (x86)\SMath

Studio</SMathDir>

</PropertyGroup>

"C:\Program Files (x86)\SMath Studio" is obviously the path of SMath Studio on your system (you have to
change it if is different).

Under the previous code, add the following code:

<ItemGroup>
<Reference Include="SMath.Controls">
<HintPath>$ (SMathDir) \SMath.Controls.dll</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Manager">
<HintPath>$ (SMathDir) \SMath.Manager.dl1l</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Math.Numeric">
<HintPath>$ (SMathDir) \SMath.Math.Numeric.dl1l</HintPath>
<Private>False</Private>
</Reference>
<Reference Include="SMath.Math.Symbolic">
<HintPath>$ (SMathDir) \SMath.Math.Symbolic.dl1</HintPath>
<Private>False</Private>
</Reference>
</ItemGroup>

This will ensure that the most recent APIs of SMath Studio available on your system will be loaded once you
open and compile the project.

Once done, you should see something like in this screenshot. The yellow vertical bar shows the lines of code
where there are changes respect to the last save; color becomes olive green after saving to show lines edited
since the begin of the session.

Condition "${SMathDir)’ == "' AND "${Configuration)’ == "Relase’ e AMainSMathstudiolca

Condition "${sMathDir)" == "" AND "${Configuration)' == "Debug" ">C:\Program Files ‘\Seath

= Include="SMath.Controls

1 jathDil ath.Controls.dll</HintPath
sed/Pri

Include="sMath.Manager

1>%(SMathDoir)\sMath.Manager.dll

lude="sMath.Math.Numeric
sMathDir)\sMath.Math.Numeric.dll

Math.symbolic
ath.Math.symbolic.dll

7. Save it, then go back to Solution Explorer window, right-click on the project name and then on Reload Project.
Confirm on the dialog that ask you if you to close all the files, if it is prompted.

Solution Explorer -

Save All (Ctrl+5Shift+5)

fa] Solution 'CombinFunction' (0 projects)
b [y CombinFunction (unavailable)

k Reload Project

¢ Edit CombinFunction.vbproj

.#_. Cut

2 Remove

If all is gone right, you will see that now the SMath Studio FEFSRTTEIR=TIEEEES
assemblies are loaded in your project (in the Solution
Explorer expand the References item)

Now everything is ready to start coding!] Solution 'CombinFunction' (1 project)
4 CombinFunction
b My Project
4 B References
& Analyzers
SMath.Controls
SMath.Manager
SMath.Math.Numeric
SMath.Math.5ymbolic

bin
obyj
VB Classl.vb
8. In the Solution Explorer double-click on Class1.vb

9. In the editing window, above the class definition, type in the following: FeFEEREEEEEESS

CombinFunction
Imports SMath.Manager -
Imports SMath.Math

10. Within the class definition type the following:
Implements IPluginHandleEvaluation

then press enter; this will automatically insert an interface (with the interface members) that must be
implemented in the class (see endnote 1). You can even click on the light bulb and choose

"Implement interface"
1

uginHandleEvaluation

Implement interface

Implement interface with Dispose pattern

11. Next, type in the following: Snancspace CoabinFunction

355 : IPluginHandleEvaluation

Dim termInfos () As TermInfo
Dim asseblyInfos () As AssemblyInfo [1 termInfos;
: o[] assemblyInfos;

Replace the exception code with this:

Me.asseblyInfos = New AssemblyInfo () {
New AssemblyInfo ("SMath Studio", New Version (0, 98), New

Guid("a37cba83-b69c-4c71-9992-55ff666763bd"))

This is required in any plug-in made for SMath Studio.

- The 2nd argument represents the version number of Smath for which you are developing this plug-in. So if
you are developing for SMath version 0.98, you insert 98. However, if the version you are targeting is different,
enter the appropriate number.

- The 3rd argument will be the same for any plug-in, never change it!

12. Immediately below the previous code, you can add the following:

Me.termInfos = New TermInfo () {
New TermInfo ("combin", TermType.Function, " (n, k) - Returns the number of
subsets (combinations) of k elements that can be formed from n elements.",

FunctionSections.Unknown, True)

s IPlugin.Initialize

This allows SMath Studio (and the user) to know several things about your function:

- The 1st argument, "combin", is the function name to use inside the worksheets;

- The 2nd argument, TermType.Function, is the type of object combin; we'll see it again later;

- The 3rd argument, "(n, k) - Returns...", is the description available in the dynamic assistance;

- The 4th argument, FunctionSections.Unknown, is used to group functions by categories (CTRL+E in SS);
- The 5th argument, true, is to display the function in the dynamic assistance (use false to hide it).

13. Now scroll the code to the following subroutine:

IPluginHandleEvaluation. TermsHandled

type in the following within the Get block (see endnote 2):

Return Me.termInfos
TermsHandled TermInfol) IPluginHandleEvaluation. TermsHandled

.termInfos

IPlugin.Dependences

type in the following within the Get block:

Return Me.asseblyInfos

Dependences As yInfof) IFlugin.Dependences

15. Now scroll to the top and add another interface:
IPluginLowLevelEvaluationFast
to doit, add a comma after the first interface and type the new one, then implement his members (hit return)

Classl

IPluginHandleEvaluation, IPluginLowlLevelEvaluationFast

TryEvaluateExpression(value Entry, comtext

HotImplementedException()

type in the following conditional If statement:

If value.Type = TermType.Function And value.ArgsCount = 2 And value.Text =
"combin" Then
End If

TryEvaluateExpression{value Entry, comtext
value.Type = TermType.Function value.Args

that means "if what is being processing is my function, then do something"

17. Now type in the following within the /f block:

Dim argl As Term() = Decision.Preprocessing(value.Items(0),

context) .ToTermsList () .ToArray ()
Dim arg2 As Term() = Decision.Preprocessing(value.Items (1),

context) .ToTermsList () .ToArray ()

icn TryeEvaluateExpression({value As E

=_Termiy 1 on o i

These preprocessing steps are needed to correctly prepare the arguments. This means that all possible
substitutions will be performed.

18. Next, type the following:
Dim answer As New List (Of Term)
wction TryEvaluatebExpression{value As Entry, combext As re, ByRef result As

value.Type = TermType.Function and value.ArgsCount = 2 and value.Text = "combin® :
argl As T ision.Preprocessing(value.Items(@), comtext).ToTermsList(}.ToArray()

arg2 As T) n.Preprocessing{value. Items(1), comtext).ToTermsList(}.ToArray()

This will prepare a container for the answer, made by Terms; these are the low-level units to build math
from within the plug-ins. To create the answer, we have to compose an expression array formed in
Reverse Polish Notation (see endnote 3). The mathematical expression is:

n!
(k)((n-%))
it can be expressed in RPN as:
n'k!nk-1*/

Thus, type in the following lines to compose the list of terms in RPN:

answer .AddRange (argl)

answer .Add (New Term (Operators.Factorial, TermType.Operator, 1))
answer .AddRange (arg2)

answer .Add (New Term (Operators.Factorial, TermType.Operator, 1))
answer .AddRange (argl)

answer .AddRange (arg2)

answer .Add (New Term (Operators.Subtraction, TermType.Operator, 2))

._”‘._:’

A B

answer .Add (New Term (Operators.Factorial, TermType.Operator, 1))

L 1 N O 1 | N1

((
answer.Add (New Term (Operators.Multiplication, TermType.Operator, 2))
((

answer .Add (New Term (Operators.Division, TermType.Operator, 2))

answer As Mew List(of Term)

answer. AddRange{argl)

answer . Add (Ne erators.Factorial, TermType.Operator, 1))
answer. AddRange{arg2)

answer . Add (Ne " s.Factorial, TermType.Operator, 1))
answer. AddRange{argl)

answer. AddRange{arg2)

Add(New Term(Subtraction, TermType.Operator

LAdd (e Factorial, TermT) oOperator, 1)
answer . Add (Ne [Opera Multiplication, TermType.Operator, 2})
answer . Add (Ne erm(rs.Division, TermType.Operator, 2})

19. To finish up the function, type the following right below our List: —ra

result = Entry.Create (answer)
Return True

This will returns the result and that the function we were looking for is found.

A result is needed even to know if this is not the plug-in that handle the function in evaluation:

TryEvaluateExpression(value Entry, comtext store, Ly
value.argsCount = 2 value.Text =

argl) 1. Preprocessing(value. Items (@), comtext).T
arg2] Preprocessing(value.Items(1), combext).Te

answer List{of Term)
answer .
answer. A Z rators.Factorial, TermType.Operator, 1))
answer . A
answer. A Z erators.Factorial, TermType.Operator, 1))
answer . A
answer . A
answer . A { rs.Subtraction, TermType.Operator, 2))
answer . A { .Factorial, TermType.Operator, 1)
answer . A ul{ .Multiplication, TermType.Operator, 2})
answer. A ul{ .Division, TermType.Operator, 2})

result = Entry.Create(answer)

20. The math is done. Now we have to check if the setup of the plug-in is complete; go in the Solution Explorer and
select Show All Files (if not yet selected).

S ¢ T E © K-

R <o Al Files

Navigate to My Project = Assemblylnfo.vb, double-click on this file. eIl R e T Tt s AT Ty
4 CombinFunction
4 J My Project
P VB Application.myapp
VB Assemblylnfo.vb
P Resources.resx
b £} Settings.settings
u-B References
bin
bj
VB Classl.vb

21. Now we can edit some attributes

22. There should be a Guid attribute; if not, you must add it. Every plug-in must have a different one.
It is the identifier of your plug-in, and it is used to save the dependency when you use combin() in a worksheet.
Remember: there are many like it, but this one is mine.

IMPORTANT

utf-8
ultTargets
| sVersion)\Micros

23. Last thing here is the version. Add an asterisk for the build and revision numbers of the AssemblyVersion, so
you will have always a new progressive version every time you will compile the plug-in. AssemblyFileVersion, if
available, can be safely removed (otherwise you have to update it manually).

24. Time to test! In the Solution Explorer, right-click the solution name and click on Rebuild.

fa] Solution 'CombinFunction' (1 project)

F CombinFunction
4 J My Project

P VB Applicatior Rebuild h

ooy

X Build

] Solution 'CombinFunction’ (1 project)

25. With Show All Files enabled in Solution Explorer, 4 [CombinFunction
navigate to bin = Debug, right click on the last folder j
and select Open Folder in File Explorer.

Add Web Reference...

Scope to This

Mew Solution Explorer View

Include In Project

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del

Rename

Open Folder in File Explorer k.

Properties Alt+Enter

26. In the folder that will be shown, there re several files; copy CombinFunction.dll and CombinFunction.pdb

(see endnote 4 to show the extensions, if not visible) ’

(=[O =]

Organizza -

Mome

@Uv| . % bin » Debug

»

%] CombinFunction.dll
&1 CombinFunction.pdb
CombinFuncticon.xml

4|

T

|::| 2 elementi selezionati

4= -

v|¢¢|| Cerci

E;l |@|
Ultima moc
211272016

217122016
21/12/2016

27. Navigate to the install directory of SMath Studio, then open the plugins folder and paste here the 2 files.

NOTE: this path must be used just develop/debug purposes

correct path of not built-in plug-ins is: %APPDATA%\Roaming\SMath\extensions\plugins\{GUID}\{version}

P

(=[O =]

-

@Uv| . % Programmi (x86) » SMath Studic » plugins

Organizza - =] Apri con... Masterizza Muowva cartella
Mome . Ultima modifica
|%| CombinFunction.dll 21/12/2016 10:03
&1 CombinFunction.pdb 21/12/2016 10:03
|%) HTMLFileType.dll 01/12/2016 11:56
|#| PictureRegion.dll 01/12/2016 11:56
|%, PlotRegicn.dll 01/12/2016 11:56
|%| SMathFileType.dll 01/12/2016 11:57
|%| SpecialFunctions.dll 01/12/2016 11:57
|%| TextRegion.dll 01/12/2016 11:57
|%| ViewerFileType.dll 01/12/2016 11:57
%) XMCDFileType.dll 01/12/2016 11:57

0 @

Dirmer

4= -

Tipo

Estensicne dell'ap...
Program Debug D...
Estensicne dell'ap...
Estensicne dell'ap...
Estensicne dell'ap...
Estensicne dell'ap...
Estensicne dell'ap...
Estensicne dell'ap...
Estensicne dell'ap...

Estensicne dell'ap...

1 | m

5

2 elementi selezionati Ultima medifica: 21/12/2016 10:03
Dimenszione: 36,0 KB

28. Now run SMath Studio, then click on Tools = Plugins...

Tools | Pages Help
|f:,-3;. Plugins... |hr
4) Ly
Snippet Manager...

4 Options...

23 dic 2016 18:36:37 - Writing your first plug-in for SMath Studio Desktop in VB.NET [rev.1].sm

In the Quick search field, we search for combin; we'll see that our plugin is loaded!

i

Extensions Manager
#% SMath Studio : ﬁ Local

: @ Plugins ‘ e

&¢ Handbooks

D Examples Combinations Function
by Andrey vashov

M Interactive books
(%, Plugins -
Applications
77 Snippets

E3 Translations

Plugin with Combination function realization.

Quick search: combin [Trﬂe v]

As you can see, the button to Remove the extension is greyed out. This is because the plug-in is
in the folder of the built-in plug-ins.

29. Is our function loaded? Go to Insert = Function... or click the Function symbol on the Toolbar .

?‘M’ Insert | Calculation Tools Pages ’]mert—Funcﬁun
L

Matrx... CTRL+M Category Function’s name
[Funciion | |[[f¢_Function.. CTRL+E [| [—||Ce -
Las” - Matrix and vector cinterp A
Complex numbers Clear L
Trigonometric col
Hyperbolic cols
Programming lcombin]
Strings concat
Files Conjugate e
Bxample
combin Iia rgl]

In the Function’ ist, t d scroll d Descritin
n the Function's name 1ISt, type ¢ and scroll down combin(...) - {0, k) - Retums the number of subsets (combinations) of =

to find our combin function; the description is the k elements that can be formed from n elemerts.
one we have defined at point 12. Since at that
point we haven't provided the number of the
arguments, it is shown with three points (undefined

number of arguments) but only if we wil 2 "
arguments the function will works (because we [et | [Cancel
have defined this behavior at point 16).
View | Insert Calculation
If you type combin on the canvas (with Dynamic assistance enabled): Grid
' Printing bounds |
coml:u:i_n|
Iz} » |[|combin(...) - (n, k) - Returns the Output window
cat __||number of subsets [combinations) of .
gg;juzate | lllk elements that can be formed from Debugger window
= n elements.
|| contimue Combinations Funetion Dynamic assistance {}J
47 CoolProp_get fluid param string " |[Fress 7AB 1 inzen]
Always on top

12/16

Press TAB and test it. If the result is like in the screenshot below, you have successfully created your first plug-in!

combin (5, 3]=10

r

combin (3, 5)=u

Factorial iz defined for real numbers
and zero

At point 12, we can use this to force a 2 arguments function on TAB key press

Me.termInfos = New TermInfo () {

New TermInfo ("combin", TermType.Function, "(n, k) - Returns the number of
subsets (combinations) of k elements that can be formed from n elements.",
FunctionSections.Unknown, True, New ArgumentInfo (ArgumentSections.RealNumber),b New
ArgumentInfo (ArgumentSections.RealNumber))

}

combiﬂ

Iz} » |[combidi™1:number®, "2:number)|- (n,
Once applied, both the number /7 coneat E:Il = Eeturns ;hjf 1um|Mr of suh:sets

) - . combinations elements that
and the type of arguments ar(_a g Cﬂn_].ugat,_ can be formed from n elements.
shown to the user, and TAB will | |- contmus _ _ Cambinations Function
provide a 2 arguments function. | [CoelProp_get fluid param strmg [Press TAB to insen]

30. However, in the real world, we seldom get by without making mistakes from time-to-time. Let's now show how
to debug our plug-in. Typically, you would debug your application before doing steps 24 through 29 that were
outlined above. Debugging an application add-in with Visual Studio Community appears to not be as

straightforward as in the professional versions of Visual Studio. But below is a workaround that seems to work.

First, we have to open again the project file, as shown in point 4. Once done, under the <PropertyGroup> we
have added previously, we can add the following lines:

<PropertyGroup Condition=" 'S$ (Configuration) |$(Platform)' == 'Debug|AnyCPU' ">
<StartAction>Program</StartAction>
<StartProgram>$ (SMathDir) \SMathStudio Desktop.exe</StartProgram>
</PropertyGroup>

Dir Condition '$(sMathDir)' == "' AND "S{Configuration)' ==

Relase R W Y

~ Condition "${sMathDir)" == "" AND "${Configuration)' == "Debug' "»C:\Program Fi

Save it, then go back to Solution Explorer window, right-click on the project name and then on Reload Project.
Confirm on the dialog that ask you if you to close all the files, if it is prompted.

31. Within Visual Basic, set a breakpoint at a convenient location. Simply place your cursor in the line at which
you wish to set the breakpoint and click on Debug = Toggle Breakpoint as shown below:

TryEvaluateExpression(value Emtry, comtext
argl e on. Quick Actions and Refactorings...
arg2 Rename...

answer List(ers Organize Imports
answer. AddRange{argl)
answer . Add(= srators. Insert Snippet... Ctrl+E, X
answer. AddRange{arg2) . -
answer . Add(EELArE . Peek Definition Alt+F12
answer. AddRange{argl) : Go To Definition F12
answer . Addrange{arg2)) i _
answer . Add(arm(- Go To Implementation Ctrl+F12
answer . Add(
answer . Add(d
answWer. . on View Call Hierarchy Ctrl+K, Ctrl+T

Find All References Ctrl+E, R

Breakpoint

Run To Cursor Ctrl+F10

TryEvaluateExpression(value Entry, comtext store, result Entry

If value.Type = TermType.Function And value.ArgsCount = 2 and value.Text = "combin™ Then.

argl
arg2

.Preprocessing(value.Ttems(@), comtext).ToTermsLis)
.Preprocessing(value.Ttems(1), comtext}).ToTermsList(}.ToArray()

answer List(
answer. AddRange{argl)

Debug Team Tools Test Driver Analyze Wi Debug - AnyCPU
Windows

Graphics

Start Debugging

Start Without Debugging

When you do this, Visual Studio will automatically start up Smath Studio and pass the focus to SMath.
When this occurs, you must attempt to utilize the plug-in you have created for the purpose of debugging it.
In this case, we type in the following:

|combin(z, 5

As soon as the “=" is entered, if a breakpoint was set, control and screen focus will return to Visual Studio
where you can step through the code, watch variable values, and other debugging tasks.

See endnote 5 for some useful links on how to debug your applications within Visual Studio.

33. To stop debugging, click on Debug = Stop Debugging as shown below. When you do this, the instance of
SMath in which you tested your plug-in will close.

Debug Team Tools Test Driver Analyze Win

Windows

op Debugging (Shift+F5)

Graphics

Continue

Stop Debugging Shift+F5

Detach All

34. Finally, when your plug-in is finished and bug free, you are ready to release it. This essentially involves
repeating steps 25 to 28 outlined above, with Relase configuration. The main difference is that the
CombinFunction.pdb file does not need to be copied into the “SMath Studio\Plugins” folder.

To know how to relase your plug-in to the community, please visit the following link:

http://en.smath.info/forum/yaf postst2399 Extensions-Manager.aspx

Probably you have noticed that the Visual Studio IntelliSense provides hints about methods and properties
available for the various namespaces; you can find a list of the featues available within the SMath Studio APls in
his Extensions Manager; go to Tools = Plugins... = Handbooks then choose Online gallery and search the

keyword core.

Extensions Manager

¥ SMath Studio @ Handt ks
& Handbooks =

‘Q: Online gallery ‘

D Examples SMath Studio Core documentaion 2016.09.14.20
_ by Andrey vashov 3.65MB
ligl Interactive books E— Object model documentation for SMath Studic Core libraries.
I _5{ Plugins
i Applications
Snippets
E3 Translations

Cuick search: core [Trtle v]

Endnotes:
. Refer to: https://msdn.microsoft.com/en-us/library/7z6hzchx(v=VS.90).aspx
. Refer to: https://msdn.microsoft.com/en-us/library/38x6w70d(v=VS.90).aspx
. For explanation of Reverse Polish notation refer to: http://en.wikipedia.org/wiki/Reverse_polish_notation
. Refer to: https://support.microsoft.com/en-us/kb/865219
. Here are some useful links about how to debug your applications within Visual Studio
- Informations on debugging in Visual Studio may be found at:
http://msdn.microsoft.com/en-us/library/k0k771bt%28v=VS.100%29.aspx
- Execution Control (stepping through your code):
http://msdn.microsoft.com/en-us/library/y740d9d3%28v=VS.100%29.aspx
- Breakpoint Overview:
http://msdn.microsoft.com/en-us/library/5557y8b4%28v=VS.100%29.aspx
- Viewing Data in the Debugger:
http://msdn.microsoft.com/en-us/library/esta7c62%28v=VS.100%29.aspx
- Edit and Continue:
http://msdn.microsoft.com/en-us/library/bcew296¢c%28v=VS.100%29.aspx

abh wnN -

